CO₂ transport by blood

CO₂ transport at tissues (chloride shift)

Results of chloride shift at tissues

		RBC	Plasma
1	HCO ₃ -	+	+
2	Cl ⁻ (Shift)	+	_
3	Cations	±	±
4	Osmotic pressure	++	±
5	H ₂ O (shift)	←	
6	PCV	+	
7	pH of blood	Slightly acidic	

CO₂ transport at lung (reverse chloride shift)

CO₂ dissociation curve (CDC)

- A graph is plotted with PCO_2 on the X-axis and CO_2 content on the Y-axis for venous and arterial blood.
 - CO₂ dissociation curve will be at a higher level for venous blood than for arterial blood.
 - Point A, arterial blood (PCO₂ 40 mm Hg) \rightarrow CO₂ (48 ml/dL of blood)
 - Point B, venous blood (PCO₂ 46 mm Hg) \rightarrow CO₂ (52ml/dLof blood)
 - The line joining A and B is called physiological dissociation curve for CO₂
 - Haldane effect: ↑O₂
 content of blood decreases
 its affinity to CO₂

Lecture 9

Regulation of Respiration Objectives

- To understand the role of pre-Botzinger complex in producing spontaneous respiration
- To identify the location and probable functions of the dorsal and ventral groups of respiratory neurons, the pneumotaxic center, and the apneustic center in the brain stem
- To understand the ventilatory responses to increased and decreased CO₂ concentrations in the inspired air
- O To understand the ventilatory responses to oxygen lack in the inspired air

Chemical control of breathing (basic mechanism)

1)

- \uparrow PCO₂, \uparrow [H⁺], \downarrow PO₂ \Rightarrow stimulation of respiration,
- \downarrow PCO₂, \downarrow [H⁺], \uparrow PO₂ (opposite changes) ⇒ slight inhibition

• Respiratory rate made proportional to metabolic rate (basic

Central chemoreceptors (CCR)

- Site: upper part of medulla oblongata, beneath ventral surface
- Stimulus: ↑Pco₂ (85% respiratory drive)
- Mechanism: indirect via H⁺
 - Reason: The BBB and blood-CSF barrier impermeable to H⁺
 - Proteins in CSF are low (20mg/100ml CSF), do not buffer H⁺

- CCR are inhibited by anesthesia, cyanide, during deep sleep
- Change in blood PCO₂ has only a potent acute effect on controlling ventilation and only a weak chronic effect
 - In prolonged hypercapnia, the HCO₃⁻ diffuses into CSF and neutralizes the H⁺

Peripheral chemoreceptors (PCR)

(Neurovascular structures)

- Site: carotid bodies (2) bifurcation of common carotid artery, aortic bodies (2 or more) aortic arch
- Stimulus: mainly ↓ PO₂ < 60mmHg (15% resp. drive), also by ↑PCO₂, ↑[H⁺],
- Mechanism: by buffer nerves------

Carotid body

- Weight : 2mg in weight
- High blood flow ≈ 2000ml /100gm tissue/min (40 times that of the brain and 4 times that of kidney)
- Innervation:
 - Carotid body ⇒ carotid sinus nerve (IX)
 - Aortic body ⇒ aortic nerve (chest) ⇒ X

Structure of carotid body

- 2 types of cells surrounded by fenestrated sinusoidal capillaries
 - Type I (glomus) cell
 - Dense core granules (dopamine)
 - Cuplike ending of afferent nerve fibers
 - Type II (glial) cells
 - Supporting cells
 - Each surround 4-6 glomus cells
- Aortic bodies have a similar structure and are not much studies because of their anatomical location.
- Mechanism of stimulation
- \downarrow PO₂ is the most potent stimulus for PCR
- PCR also sensitive to \uparrow PCO₂ and [H⁺]to a lesser extent

- Smooth muscle of pulmonary arteries contain similar O_2 sensitive K⁺ channels (Hypoxia \rightarrow vasoconstriction)
- O Systemic arteries contains ATP-dependent K⁺ channels (Hypoxia →vasodilatation)

Factors stimulating peripheral chemoreceptors:

1) $\downarrow PO_2$

- 2) Vascular stasis (\downarrow The amount of O₂ delivered to the receptors/ time)
- 3) Cyanide (prevent O_2 utilization at the tissue level)
- 4) Sufficient doses of nicotine and lobeline
- 5) ↑ Plasma K⁺ (exercise induced hyperpnea)
- The PCR utilize the dissolved O_2 in blood for their metabolic demands because the blood supply is so large (stimulated by \downarrow in dissolved O_2)
 - In anemic hypoxia as in anemia and CO poisoning there is no stimulation of respiration through PCR

O ₂ lack is w 15% re	eaker stimulus than — espiratory drive	 CO₂ excess 85% respiratory drive 		
Periphera	al chemoreceptors	Central chemorecptors		
70 mmHg	No effect	3%	Ventilation double	
60 mmHg Ventilation double		10%	Ventilation 10 times	
30 mmHg	Ventilation 6 times			
20 mmHg	Ventilation inhibited			

- ⊙ PaO₂ from100 to 60 mm Hg \Rightarrow no much stimulation of respiration due to counterbalancing inhibitory effect:
 - 1) ↓ Arterial [H⁺]: ↓ PaO₂ ⇒ Hb less saturated with O₂ (deoxygenated Hb is weak acid and a strong buffer) ⇒ (Hb bind H⁺) ⇒ ↓ [H⁺] ⇒ inhibits respiration

2) ↓ Arterial PCO₂: ■ Hypoxia
$$\Rightarrow \uparrow$$
 ventilation \Rightarrow wash off CO₂ $\Rightarrow \downarrow$ PaCO₂ \Rightarrow inhibits respiration.

Acid base disturbances

	Acidosis (PH < 7.35)		Alkalosis (PH >7.45)			
		Respiratory Hypoventilation	Metabolic		Respiratory Hyperventilation	Metabolic
Cause	↑H+	↑PCO ₂ HCO ₃ -	PCO₂ ↓HCO₃⁻	↓Н+	↓PCO ₂ HCO ₃ -	PCO ₂ ↑HCO ₃ -
Compensatory	↓ ↑H+	<pre> ↑PCO₂ </pre> ↑HCO ₃ - Renal	↓PCO ₂ ↓HCO ₃ - ↓ypervent	∱H+	↓PCO ₂ ↓HCO ₃ - Renal	↑PCO ₂ ↑HCO ₃ - Hypovent